【中3数学】円周角の定理とは?円周角や中心角について解説します!

こんにちは、家庭教師のあすなろスタッフのカワイです!

今回は、円周角の定理とは何か?について解説していこうと思います!

そもそも円周角ってなに?という人もいると思いますが、出てくる用語については詳しく説明しながら進めていくので、よろしければ最後まで読み進めてみてください。

それでは、今回も頑張っていきましょう!


あすなろには、毎日たくさんのお悩みやご質問が寄せられます。 この記事は数学の教科書の採択を参考に中学校3年生のつまずきやすい単元の解説を行っています。

文部科学省 学習指導要領「生きる力」

http://www.mext.go.jp/a_menu/shotou/new-cs/index.htm

円周角・弧とは?

円周角とは、文字で表すと、

「円周上に点を3つ置き、3点を2本の線分でつないだ時、その2本の線で出来た角」

のことをいいます。

図形についてを言葉使って説明しても全然伝わらないと思うので、図を示して説明していきますね。

円

上のような円があったとします。大きさは何でもいいです。

この円の上に点を3つ乗せていくと、

円と円周上の三点ABC

このようになります。点はそれぞれ、点A,点B,点Cとしておきます。

次に、乗せた3つの点の2つの線分でつないでいきます。

円と円周上の三点ABCと、線分AB、線分BCの図

こうすると、線分と線分に挟まれた点Bのところに、角が出来ていることが分かります。

この角を、線分を構成するA,B,Cを用いて∠ABCと表せます。

弧ACに対する円周角ABCを表した図

この時、弧ACに対して角が出来ていることから、∠ABCを弧ACに対する円周角と呼びます。

ここでとは、ACの間のように、円周上の2点間にある円周上の一部のことをいいます。

これは点Bが特別なわけではなく、つなぎ方によって、

弧ABに対する円周角ACBを表した図

となったり、

弧BCに対する円周角BACを表した図

となったりもします。

上については、弧ABに対する円周角∠ACB、

下については、弧BCに対する円周角∠BAC

となります。円周角については、とる点と線分のつなぎ方によって、いろいろ取ることが出来るということです。

同じ弧で出来た円周角の関係

次に、円周角をつくる弧は変えずに点の位置を少しずつ変えてみます。

円周角∠ABC

弧ACに対する円周角ABCを表した図

から、弧ACは変えずに、点Bを少し左寄りに移動させた点B’で円周角をつくると、

弧ACに対する円周角AB'Cを表した図

のようになります。また、弧ACは変えずに、点Bから右側に大きく移動させた点B’’で円周角をつくると、

弧ACに対する円周角AB''Cを表した図

のようになります。これらをまとめて表してみます。

弧ACに対する円周角ABC、AB'C、AB''Cを比較した図

見て分かる通り、角をつくる点は大きく変わりましたが、角度は変わりません。

式で表すと、∠ABC=∠AB’C=∠AB’’Cということです。

弧が同じであれば、同じ円周上(弧の外側)のどの点をとっても円周角は変わらない

ということを覚えてください。

同じ円周上の違う場所の等しい弧による円周角

少し発展して、今度は別の弧だけど同じ円周上の等しい弧を考えてみます。

同じ円では、弧の位置が異なっていても大きさが同じであれば、同じ大きさの円周角となることを示した図

この図で分かると思いますが、同じ円周上の同じ大きさの弧であれば、円自体を回転させればその弧をつくることが出来ます。

ということは、同じ円周上の別の等しい弧からできる円周角の大きさは変わりません!

円周角の大きさ弧の大きさによって完全に決まるということです。

さて、ここまでの事を二つの文でまとめると、

一つの円において、

  • 等しい円周角に対する弧は等しい
  • 等しい弧に対する円周角は等しい

となります。

中心角とは

次に、中心角について解説していきます。

中心角を一言で言うと、円周角の中心バージョンです。

円周角では、点を円周上に3つ置きましたが、円周上に2つ置いた点と、円の中心をそれぞれ結んだときに出来た角を中心角といいます。

これを図にすると、

弧ACに対する中心角AOC

このようになります。中心角も円周角と同じように、弧によって角度は変わります。

また、1つの円において、等しい弧であれば、中心角も等しく、中心角が等しければ、弧が等しくなります。

確認として、他の点による中心角も見てみます。

弧ABに対する中心角AOB
弧BCに対する中心角BOC

円周角と中心角の関係 ~円周角の定理~

円周角と中心角の関係について

さて、ここで思うのは、

「とある弧に対する円周角と中心角ってどんな関係にあるんだろう?」

ということです。

この大きさについて証明を用いて調べてみましょう。

円周角と中心角の関係とは?

このように、円周上に3点(A,B,C)と円の中心の点Oを考えます。

円周角の定理の証明の図

この図の通り、各点を線分で結び、BとOの延長線かつ円周上の点をDとします。

さて、OAとOBはどちらも円Oの半径となるので、OA=OBとなります。

ここで、△ABOは二等辺三角形となるので、

∠OAB=∠OBA

となります。さて、これらを∠aとします。

次に、∠AODという角を見てみると、これは△ABOの外角となっていることが分かるので、

∠AOD=∠OAB+∠OBA=2∠a

となります。

一方、△CBOについても同様に考えることが出来るので、∠OBC=∠bとすると、

∠OBC+∠OCB=∠COD=2∠b

となります。

さて、弧ACに対する円周角と中心角は∠ABCと∠AOCであるから、

∠ABC=∠OBA+∠OBC=∠a+∠b

∠AOC=∠AOD+∠COD=2∠a+2∠b=2(∠a+∠b)=2∠ABC

となります。

このことから、中心角は円周角の2倍となることが分かりました。

円周角の定理

1つの弧に対する円周角の大きさは一定であり、その弧に対する中心角の半分である。

円周角の定理について説明した図

弧が直径の場合

弧が直径となる場合、円周角は90°となる

今度は、上で説明した図形のうち、点A,点O,点Cが一直線になる場合を考えてみます。

円周角の定理から明らかなことですが、中心角∠AOCは180°となるので、円周角∠ABCはその半分の90°となります。

さて、ここで点Aと点Cを結んだACは、この円の直径を示すことが分かります。

このことから、

「円の直径に対する円周角は90°となる」

と分かります。(中学でタレスの定理とよばれるものの1つです。この名前を中学では教えません。)

まとめ

円周角と弧

一つの円において、

  • 等しい円周角に対する弧は等しい
  • 等しい弧に対する円周角は等しい

円周角の定理

  • 同じ弧で作られる円周角の大きさは等しく、その弧に対する中心角の半分の大きさとなる。

円周角の定理について知ることで、円の特徴を数学的に捉える方法を新たに手に入れたことになります。

証明で用いられることも多いので、しっかり理解して次の内容に進んでいくようにしましょう。


最後までご覧いただきありがとうございました。
「数学でわからないところがある」そんな時に役立つのが、勉強お役立ち情報!
数学の単元のポイントや勉強のコツをご紹介しています。
ぜひ参考にして、テストの点数アップに役立ててみてくださいね。

もし上記の問題で、わからないところがあればお気軽にお問い合わせください。少しでもお役に立てれば幸いです。

関連記事があります

【中1数学】反比例のグラフや座標が分かっているときの、式の導き方を解説します!
【中1英語】 自分のすることを説明する「play」「like」
【中1数学】逆数について解説!これが分かれば負の数を含む分数の割り算も怖くない!
【中1数学】数の範囲や四則計算の関係について解説!
【中3数学】平方根を含む乗法(掛け算)のやり方を解説します!

目からウロコの体験授業が無料で0円 先生と生徒たちの楽しそうな写真 たった15分でだれでも楽しみながら、大きく点数アップ↑できる勉強法を教えます!お申し込みはとってもカンタン!無料の体験授業に申し込む

もし、他のところと迷われたら…一番にお電話ください。
あすなろでは、家庭教師が初めての方に安心していただけるよう、質問や疑問に丁寧にお答えします。無理な勧誘は一切無いことをお約束いたします。

無料の体験授業

昨年(2023年)は1,000人以上が体験授業で実感!
わかる」喜びと「できる」自信が持てる無料の体験授業実施中!

私たちは、一人でも多くのお子さんに「勉強のおもしろさ」を知ってほしい。そんな想いで無料の体験授業を実施しています。私たちは、一人ひとりのお子さんの目線に立って、得意・苦手な分野に合わせて、勉強のやり方を提案します。この体験授業がお子さんの勉強の悩みを解消するキッカケになれば嬉しいです。

無料の体験授業で、「たった15分の勉強で、今までの3倍の効果を出せる勉強方法」を無料体験で実感してみませんか?勉強が苦手な子ほど、ほんの少しのキッカケで必ず変えてみせます!

フリーコール0120-32-4152 午前9時~午後10時土日祝も受付しております

あすなろのお約束

  • 学校の授業・教科書を中心に、苦手科目に合わせて5教科指導しています。
  • 国公立大学を中心に、「お子さんの成績アップを手伝いたい!」とやる気と熱意溢れる家庭教師をご紹介します。万一、相性が合わない場合無料で何度でも交代ができます。
  • お子さんの習熟度に合わせて、成績アップと第一志望合格を目指して指導を行ないます。
  • 私たちが目指すのは、「あすなろでやってよかった!」と実感していただくことです。
あすなろまるわかりBOOKを資料請求する
無料の体験授業に申し込む
受験勉強が100倍楽しくなる本を資料請求する
発達障害・不登校のお子さんのためのサポートブックを資料請求する